1400 cm^{-1} and a weaker band at 2100 cm^{-1} . The reaction of CSCl₂ and Pt(PPh₃)₂(C₂H₄) gave a green solid with bands due to the PPh, ligand and a yellow solid which had a strong band at 1400 cm^{-1} and a weak band at 2105 cm^{-1} . The reaction of CSCl₂ with Pt(PPh₃)₂(C₂H₄) in the presence of halide acceptor BCl₃ in benzene gave a brown solid with a very intense ir band at 1400 cm⁻¹ and a weaker band at 2100 cm-'. This latter band which may be due to Pt-H stretching arising from hydrolysis of a Pt(I1)-CS complex was diminished in intensity when stringent procedures were adopted to exclude water and oxygen, but a product completely free from the 2100-cm⁻¹ band could not be prepared. We suggest that the product with the intense band at 1400 cm^{-1} is $[Pt(PPh_3)_2(CS)Cl]^+$, but attempts to recrystallize this compound in various solvents and in the presence of PF_6^- and BPh_4^- resulted in the disappearance of the $\nu(CS)$ band at 1400 cm⁻¹ and evolution of hydrogen sulfide. Cationic platinum(I1) carbonyl complexes are highly susceptible to nucleophilic attack at $CO¹⁰$ and the CS ligand is more readily attacked by nucleophiles than the CO ligand 1,11

Experimental Section

Thiophosgene from Aldrich Chemical Co. was used without further purification. Previously reported procedures were used
to prepare $Ir(PPh₃)₂(N₂)Cl$, $Ir(CO)(PPh₃)₂Cl$, $Rh(PPh₃)₃Cl$, $[Rh₁)₂Cl$ $(CO)_2Cl_2$, $[Rh(CO)_2Cl]_2$, $[Rh(CO)_2(PPh_3)Cl]_2$, $Rh(PPh_3)_2(CO)Cl$, $Pt(PPh_3)_3$, $Pt(PPh_3)_2(C_2H_4)_2$, and $[Ir(PPh_3)_2(\overline{CO})(CH_3\overline{CN})]PF_6$.¹² Benzene was distilled from \overline{P}_4O_{10} and stored over molecular sieves. All reactions were conducted in a nitrogen atmosphere. Infrared spectra were obtained in Nujol and hexachlorobutadiene (hcb) mulls with a Perkin-Elmer Model 621 spectrophotometer. Only frequencies other than those due to the PPh, ligand are reported herein, and frequencies reported herein are for Nujol mulls except in the 1370 **an-'** region where hcb mulls were employed. Microanalyses were performed by Chemalytics, Inc., Tempe, Ariz.

Trichlorobis(triphenylphosphine)thiocarbony~idium(III~, [Ir- $(PPh₃)₂(CS)Cl₃$. Thiophosgene (0.18 ml, 2.3 mmol) was added to 720 mg (0.93 mmol) of $Ir(PPh₃)₂(N₂)Cl$ in 30 ml of benzene. The tan solid which formed was recrystallized twice from dichloromethane-ethanol to give 680 mg (80%) of pale-yellow crystals, mp 193" dec. *Anal.* Calcd for $\text{IrC}_{37}H_{36}Cl_{3}P_{2}S \cdot CH_{2}Cl_{2}$: C, 47.93; H, 3.38; Cl, 18.6; *S,* 3.36. Found: C47.45; H, 3.52; C1,20.5; *S,* 3.45. $\nu(CS)$ 1368 (hcb) (vs); $\nu(Ir-Cl)$ 308 (w), 273 (w), 282 (sh) cm⁻¹

Dichlorobis(tripheny1phosphine)thiocarbonylcarbonyliridium-011) Hexafluorophosphate, **[Ir(PPh,),(CO)(CS)CI,]PF,.** A solution of 668 mg (0.72 mmol) of $[Ir(PPh_3)_2(CO)(CH_3CN)]PF_6$ and 0.08 ml(l.0 mmol) of thiophosgene in 20 ml of dichloromethane was stirred for 20 min. The solvent was evaporated under reduced pressure to *5* ml and 40 ml of diethyl ether was added to precipitate 630 mg of pale-white solid. The product was recrystallized from dichloromethane-diethyl ether to give 480 mg (67%) of bone-white crystals, mp 135° dec: $\nu(CS)$ 1409 (vs); $\nu(CO)$ 2127 (s); $\nu(PF_6)$ 842 (vs); $v(Ir-CI)$ 305 (w), 295 (w) cm⁻¹. *Anal.* Calcd for IrC₃ $H_{30}OCl_2F_6P_3S$: C, 45.46; H, 3.01; Cl, 3.19; S, 7.07. Found: C, 45.61;H, 2.98;C1,3.62; *S,* 6.77.

Trichlorobis(triphenylphosphine)thiocarbonylrhodium(III), $[Rh(PPh₃)₂(CS)Cl₃]$. Thiophosgene (0.08 ml, 1.0 mmol) was added to 463 mg (0.50 mmol) of $Rh(PPh_3)$, Cl in 15 ml of benzene. The reaction mixture was stirred at room temperature for **1** hr. The red-brown solid (252 mg, *65%)* was recrystallized from dichloromethane-benzene and washed with diethyl ether, mp 141" dec: $\nu(CS)$ 1364 (hcb) (vs) (lit. value 1362 cm⁻¹ (C₆H₆))⁸; $\nu(Rh-Cl)$ 295 (w), 282 (w), 270 (w) cm⁻¹. *Anal.* Caled for $RhC_{37}H_{30}Cl_3P_2S$: C, 57.14 ; H, 3.88 ; Cl, 13.68 ; S, 4.11. Found: C, 56.92 ; H, 3.63 ; Cl, 13.50; S, 4.98.

Acknowledgment. We thank the donors of the Petroleum

(10) (a) **C.** R. Green and R. **J.** Angelici, *Inorg. Chem.,* **11,2095 (1972); (b) R.** J. Angelici, *Accounts Chem. Res., 5,* **335 (1972),** and references therein.

78 (1971). (1 1) L. Busetto, M. Graziani, and **U.** Belluco, *Inorg. Chem.,* 10,

1370 (1973). (12) C. **A.** Reed and W. R. Roper, *J. Chem. SOC., Dalton Trans.,* Research Fund, administered by the American Chemical Society, for support of this research. C. J. C. was a National Science Foundation Undergraduate Research Participant.

CSCl₂, 463-71-8; Ir(PPh₃)₂(N₂)Cl, 15695-36-0; [Ir(PPh₃)₂(CO)-Registry No. 1A, 51540-60-4; 2, 51540-62-6; 1B, 51607-40-0; (CH_3CN)]PF₆, 51540-63-7; Rh(PPh₃)₃Cl, 14694-95-2.

> Contribution from the Chemistry Department, University of New Brunswick, Fredericton, New Brunswick, Canada

Convenient Synthesis **of** Tellurium Chloride **Pentafluoride**

Clement Lau and Jack Passmore*

Received March 6, I974 AIC40153 *t*

Tellurium chloride pentafluoride was first prepared in low yield by Fraser, Peacock, and Watkins¹ by the reaction of fluorine and tellurium tetrachloride. More recently² TeCl-F, was produced as one of the products of the reaction of chlorine monofluoride and bis(perfluoroethyl) telluride and ditelluride. We wish to report the convenient synthesis of TeClF₅ in good yield, by the reaction of chlorine monofluoride with TeF_4 , TeCl_4 , or TeO_2 .

Experimental Section

scribed in ref 3. Te, TeV_6 , TeCl_4 , TeO_2 , and CIF were used without further purification. Tellurium tetrafluoride was prepared by the reaction of tellurium hexafluoride and tellurium metal⁴ in a Monel vessel at 160-170" for 3 days. Crystalline tcllurium tetrafluoride product was sublimed into the cooled top of the Monel reactor. Apparatus and Materials. Techniques and apparatus are dc-

Tellurium Tetrafluoride and Chlorine Monofluoride. Chlorine monofluoride (7.9 mmol) was condensed in small aliquots onto tellurium tetrafluoride (3.54 mmol) in a Kel-F vessel. The reactants were warmed to room temperature after each addition and finally left overnight. Solid TeV_4 was consumed; the reaction product was a yellow liquid. Materials volatile at -78° were condensed from the reaction vessel for about 1 min and shown to contain ClF, TeCl- F_s , Si F_4 , and fluorocarbons. The involatile fraction was clear liquid TeClF, (2.76 mmol).

experiment chlorine monofluoride (31 mmol) was condensed in small aliquots onto $TeCl₄$ (5.5 mmol). The reactants were warmed to room temperature after each addition. Liquid C1F reacted with TeC1, with bubbling. The yellow liquid product consisted of a mixture of TeClF₅, chlorine, and impurities such as SiF_4 . The ¹⁹F nmr¹ of the product showed that the only tellurium species present was TeClF **5.** Relatively pure material was obtained by condensing out about two-thirds by volume of the liquid product. The last traces of chlorine were removed by agitation with mercury giving 4.6 mmol of clear colorless liquid TeClF₅. The volatile products of reactions, in which less than a stoichiometric amount of CIF had been added, were examined by infrared and ¹⁹F nmr. Only TeClF, was detected by these techniques, although chlorine was also present. X-Ray powder photographs of the solid showed the presence of TeF_4 , but its mass spectrum showed peaks attributable to both TeCl₄ and $TeF₄$ molecular ions and fragments. Tellurium Tetrachloride and Chlorine Monofluoride. In a typical

Reaction **of** Tellurium Dioxide and Chlorine Monofluoride. In a typical reaction chlorine monofluoride (39.5 mmol) was condensed in small aliquots onto $TeO₂$ (3.36 mmoles). After the first additions a deep red liquid (probably $CIO₂$) and oxygen were formed. The

(1) G. W. Fraser, R. D. Peacock, and P. M. Watkins, *Chem. Commun., 1257 (1968).*

(2) C. D. Desjardins, C. Lau, and J. Passmore, *Inorg. Nucl.*

Chem. Lett., **10, 151 (1974).**

(3) C. Lau and **J.** Passmore, *J. Chem. SOC., Dalton Trans.,* **2528 (1973).**

(4) J. **H.** Junkins, H. **A.** Bernhardt, and E. **J.** Barber, *J. Amer. Chem. Soc.,* **74,5749 (1952).**

infrared spectrum of the final products showed the presence of ClF, FClO₂, and TeClF₅.

Tellurium Chloride Pentafluoride. The identity of the material was established by comparison of its ¹⁹F nmr spectrum with that reported in the literature.¹ TeClF, is a colorless liquid, bp 13.5 \pm 1.0° , mp (under its own vapor) $-28 \pm 1.0^{\circ}$. It is unreactive toward mercury at room temperature and can be kept in dry metal and glass apparatus. The infrared spectrum of the gas in the range 4000-250 cm-' showed several absorptions with the most prominent ones occurring at 727 **(vs),** 410 **(s),** 317 **(vs),** and 259 (s) cm-' in substantial agreement with Peacock, *ef al.,'* who reported very strong bands at 726 and 317 cm⁻¹. A detailed analysis of the vibrational spectrum of TeClF_s is in progress.⁵

Acknowledgments. We thank the National Research Council of Canada and the Defense Research Board (Grant No. 9530-128) for financial assistance and Dr. R. Kaiser for 19F nmr spectra.

15192-264; TeCl₄, 10026-07-0; TeO₂, 7446-07-3. Registry No. TeClF, $21975-44-0$; ClF, 7790-89-8; TeF₄,

submitted for publication. **(5)** W. V. F. Brooks, M. Eshaque, C. Lau, and **J.** Passmore, to be

> Contribution from the School of Chemical Sciences, University of Illinois, Urbana, Illinois 61801

Sign of the Electric Field Gradient in Dioxidized Biferrocenylene

William H. Morrison, Jr., and David N. Hendrickson^{*1}

Received February 4, 1974 AIC400783

Iron-57 Mossbauer spectroscopy shows that ferrocene has a quadrupole splitting of 2.4 mm/sec and the ferricenium ion a splitting ranging from 0.0 to 0.08 mm/sec.²⁻⁴ Collins⁵ determined that for ferrocene the electric field gradient V_{zz} is *positive*. A recent⁶ ligand field treatment of ferrocene shows that ferrocene has the configuration $(a_{1g})^2(e_{2g})^4$. If the contributions to the field gradient for the two different types of electrons are taken as $V_{zz}(a_{1g}) = -4/\gamma (r^{-3})$ and $V_{zz}(e_{2g}) = 4/\gamma (r^{-3})$, then ferrocene is calculated to have a relatively large *positive* field gradient in agreement with experimental results.⁵ The collapse in quadrupole splitting observed for ferricenium ion is (qualitatively) explicable in terms of the loss of an e_{2g} electron.

In our studies^{$7-9$} of mixed-valence biferrocene-like compounds it has been found⁹ that dioxidized biferrocenylene, I,

(1) Camille and Henry Dreyfus Fellow, 1972-1977.

(2) R. A. Stukan, S. P. Gubin, A. N. Nesmeyanov, V. I.
Gol'danskii, and E. F. Makarov, *Teor, Eksp. Khim.*, 2, 805 (1966).
(3) U. Zahn, P. Kienle, and H. Eicher, Z. Phys., 166, 220 (1962).

(4) G. K. Wertheim and R. I,. Herber, *J. Chem. Phys.,* **38,** 2106 (1963); T. Birchall and *I.* Drummond, *Inorg. Chem.,* **10,** 399 (1971). **(5)** R. L. Collins, *J. Chem. Phys.,* **42,** 1072 (1965).

(6) *Y.* S. Sohn, D. N. Hendrickson, and H. B. Gray, *J. Amer.*

Chem. **Soc.,** 93, 3603 (1971). (7) W. H. Morrison, Jr., **S.** Krogsrud, and D. N. Hendrickson, *Inorg. Chem.,* 12, 1998 (1973).

Figure 1. Magnetically perturbed (27-kG longitudinal field)⁵⁷Fe Mossbauer spectrum for a sample of biferricenylenium bis(hexafluor0 phosphate) at 4.2'K. The velocity scale is referenced to Co in *Cu* source.

which formally contains two Fe(III) $(S = \frac{1}{2})$ centers, has a large quadrupole splitting of 2.950 (1) mm/sec (PF_6^- salt) at 298° K. Because we are very interested in electron exchange in mixed-valence [Fe^{II}Fe^{III}] and related [Fe^{III}Fe^{III}] materials, this unusally large quadrupole splitting for an iron(II1) metallocene prompted a determination of the sign of the field gradient for dioxidized biferrocenylene. The results of this study are reported in the present paper.

Results and Discussion

A sample of the PF₆⁻ salt of I was prepared and analyzed. *Anal.* Calcd: C,36.51;H,2.45;Fe, 16.98. Found: C, 36.92; H, 2.48; Fe, 17.22. The 4.2'K magnetically *unperturbed* ⁵⁷Fe Mossbauer spectrum for this sample gives an isomer shift of 0.573 **(2)** mm/sec *(vs.* metallic iron) and a quadrupole splitting of 2.951 (2) mm/sec. In a previous paper⁹ we proposed that the large quadrupole splitting in dication I is the result of the delocalization of the e_{2g} $(d_{x^2-y^2}$ and d_{xy} in D_{5d} symmetry) electrons throughout the molecule *via* an electron-exchange interaction between the two Fe(II1) centers. The presence of such an exchange interaction has been substantiated by the observation⁷ that dication I is *diamagnetic.* The interaction of the Fe(II1) e_{2g} electrons could lead to a reduction in $V_{zz}(e_{2g})$ due to a decrease in $\langle r^{-3} \rangle$ for these electrons. If $V_{zz}(e_{2g})$ became very small, then the field gradient at the Fe(II1) centers would be determined by the two $a_{1g}(d_{z^2})$ electrons and the field gradient would be *negative* and of a magnitude comparable to ferrocene.

The 4.2'K magnetically (27-kG longitudinal field) *perturbed* ⁵⁷Fe Mossbauer spectrum for the PF₆⁻ salt of I is shown in Figure 1. It is clear from this spectrum that the electric field gradient at the Fe(II1) centers is *negative* as the above model predicted. **A** second piece of information is potentially available from such a spectrum. This is the asymmetry parameter $\eta = (V_{xx} - V_{yy})/V_{zz}$, which would give us a measure of how strongly one iron atom perturbs a second. Unfortunately, it has been shown¹⁰ that an accurate determination of η for large quadrupole splittings from the magnetic spectrum is not easily made. From a comparison of various simulated magnetic spectra¹⁰ it is possible to deduce that η is less than \sim 0.4 for our case. This probably does not tell us much about the extent of

(8) W. H. Morrison, Jr., and D. N. Hendrickson, *J. Chem. Phys.,* 59, **380** (1973).

(9) W. **H.** Morrison. **Jr..** and D. N. Hendrickson, *Chem. Phys. Let;,* i2, 119 (1973). '

(10) R. L. Collins and **J.** C. Travis in "Mossbauer Effect Methodology," Vol. **3,** Plenum Publishers, **New** York, N. Y., 1967, **p** 123.